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A Theory of Electoral
Equilibrium:
A Spatial Analysis
Based on the
Theory of Games

MELVIN J. HINICH
JOHN O. LEDYARD
PETER C. ORDESHOOK

Two areas of political science that utilize rigorous deductive formu-
lations are: (1) the paradox of voting, and (2) spatial analysis of
election competition. It is not surprising that the analysis of the paradox
and the development of spatial theory occur simultaneously because
the concerns of both endeavors are parallel: we study the paradox to
ascertain conditions under which majority-rule equilibria exist, that is,
conditions under which at least one alternative exists that cannot be

* This research was supported by a National Science Foundation grant to
Carnegie-Mellon University. We wish also to thank Peter Aranson, Richard
McKelvey, and Howard Rosenthal for their valuable comments.
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defeated by any other alternatives in a majority vote;! we study spatial
theory to ascertain from citizen preferences and decision rules the
strategies candidates should adopt. To identify such strategies, however,
we must ascertain whether or not an electoral equilibrium exists, which,
in the case of competition between two plurality-maximizing candidates,
is equivalent to ascertaining whether or not a majority-rule equilibrium
exists.?

This correspondence reveals a constraint on the development of
spatial theory. The existing sufficient conditions for a majority-rule
equilibrium if the domain of social choice is a single issue (unidimen-
sional), require that citizens have single-peaked preferences. If we
define the domain of social choice over many issues (multidimensional),
then present models require, typically, that the citizens’ most preferred
positions be distributed symmetrically about the mean preference and
that citizens’ utility functions also satisfy certain symmetry properties.
We render spatial models more consonant with reality: by moving from
a unidimensional to a multidimensional model; by allowing citizens to
abstain; by considering alternative preference distributions; and by
permitting candidates to maximize either plurality or votes. We are not
certain, though, that an equilibrium exists if our combinations of
assumptions do not satisfy any of these sufficient conditions. Hence,
those theorems of spatial theory that demonstrate the existence of

1 See especially Duncan Black, The Theory of Committees and Elections (Cam-
bridge: At the University Press, 1962); Charles R. Plott, “A Notion of Equilibrium
and Its Possibility Under Majority Rule,” American Economic Review, 57 (September
1967), 787-806; A. K. Sen, “A Possibility Theorem on Majority Decisions,”
Econometrica, 34 (April 1966), 491-499; and Gordon Tullock, “The General
Irrelevance of the General Impossibility Theorem,” Quarterly Journal of Economics,
81 (May 1967), 256-270. For a review and synthesis of this literature as well as an
extended bibliography, see Charles R. Plott, ‘“Recent Results in the Theory of
Voting” (Krannert School of Industrial Administration, Paper #281, June, 1970);
and William H. Riker, “Voting and the Summation of Preferences,” American
Political Science Review, 55 (December 1961), 900-911. For the general statement
of the paradox and its implications see Kenneth J. Arrow, Social Choice and In-
dividual Values (New York: John Wiley & Sons, 1963).

2 For additional discussion of the relationship between the paradox of voting and
spatial models see Otto A. Davis, Melvin J. Hinich, and Peter C. Ordeshook,
“An Expository Development of a Mathematical Model of the Electoral Process,”
American Political Science Review, 64 (June 1970), 426448, and Martin Shubik,
“A Two-Party System, General Equilibrium and the Voter’s Paradox,” Zeitschrift
fiir Nationalokonomie, 28 (1968), 341-354.
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equilibria usually require symmetric utility functions, symmetric
distributions of preferences, and citizens who weight the issues in an
identical fashion, who employ the same calculus of voting, and who
choose to vote for a candidate or to abstain without partisan bias.

We present here a new class of sufficient conditions for the existence
of a majority-rule equilibrium and an electoral equilibrium. We review
briefly in the next section the sufficient conditions that Duncan Black,
Charles R. Plott, and Gordon Tullock formulate. We discuss in
Section 11 a fundamental theorem of game theory that demonstrates
the logical character of our analysis. We present in Section 111 conditions
sufficient to guarantee the existence of an equilibrium if candidates
maximize either plurality or votes.® While the sufficient conditions we
review in Section I are constraints on the preferences citizens hold and
assume that all citizens vote and choose deterministically, the conditions
we offer constrain citizen-decision rules and assume that citizens choose
probabilistically and can abstain.* We review in Section 1v the assump-
tions of the basic multidimensional model of spatial competition that
we eliminate with the new conditions we present. These now expendable
assumptions are: (1) the electorate’s distribution of preferences, f(x), is
symmetric; (2) all citizens assign the same relative saliency to an issue;

3 For a rigorous distinction between vote-maximizing and plurality-maximizing
candidates, see M. J. Hinich and P. C. Ordeshook, “Plurality Maximization vs.
Vote Maximization: A Spatial Analysis with Variable Participation.” American
Political Science Review, 64 (September, 1970), 772-791.

4 Our use of probability should not be confused with those analyses which seek
to calculate the probability that a paradox occurs. See, for example, Richard G.
Niemi and Herbert F. Weisberg, ‘A Mathematical Solution for the Probability of
the Paradox of Voting,” Behavioral Science, 13 (July 1968), 317-323; Richard G.
Niemi, “Majority Decision-Making with Partial Unidimensionality,” American
Political Science Review, 63 (June 1969), 488-497; Frank Demeyer and Charles R.
Plott, “The Probability of a Cyclical Majority,” Econometrica, 38 (March 1970),
345-354; Mark B. Garman and Morton I. Kamien, “The Paradox of Voting:
Probability Calculations,” Behavioral Science, 13 (July 1968), 306-316; David
Klahr, “A Computer Simulation of the Paradox of Voting,” American Political
Science Review, 60 (June 1966), 384-390. In these analyses, preferences are assigned
probabilistically to people, and each person then votes for one alternative or another
with certainty in accordance with his assigned preference ordering. Moreover,
these analyses all assume that citizens vote, that is, that no one can abstain. We
assume, however, that citizens’ utility functions are known with certainty, but that,
aggregating across the population, these utility functions define only probabilistic
choices and that one admissible choice is to abstain.
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(3) all citizens employ the same calculus of voting, that is, they all
abstain for equivalent reasons; (4) citizen choices are unbiased by
partisan attachments or candidate personality. We present in Section v
several examples of situations that satisfy our conditions. Finally, we
present in Section vI a numerical procedure for calculating the location
of electoral equilibria as well as two conditions under which the mean
preference of the electorate on each issue is the equilibrium. Because
rigorous proofs of our conclusions are mathematically complex, we
place them as well as the tedious technical details of our analysis, in
an Appendix.

Two Sufficient Conditions for Majority-Rule Equilibrium

The most widely-cited condition for guaranteeing that a majority-
rule equilibrium exists is Black’s condition of single peakedness.®
This condition is discussed extensively in the literature of political
theory and we need not review it here. We observe, simply, that single
peakedness is a constraint on citizens’ preferences: that is, citizens
cannot hold certain preference orderings simultaneously. If, for
example, one of three citizens has the preference ordering xPyPz
(read: x is preferred to y and y is preferred to z) and if the second citizen
orders the alternatives zPxPy, then a third citizen cannot order the
alternatives yPzPx.

We could employ Black’s condition as a base upon which to construct
a spatial model; but it limits the generality of these models. Specifically,
such a base limits us to a unidimensional conceptualization of election
competition. While a single dimension or issue may characterize many
elections, Stokes and Converse argue effectively that a truly realistic
spatial model must be multidimensional.® Stated differently, we must

5 Theory of Committees.

8 Phillip E. Converse, ‘“The Nature of Belief Systems in Mass Publics,” in David
E. Apter, ed., Ideology and Discontent (New York: Free Press, 1964), 206-261;
“The Problem of Party Distances in Models of Voting Change,” in M. Kent Jennings
and L. Harmon Ziegler, eds., The Electoral Process (Englewood Cliffs, N.J.:
Prentice-Hall, 1966), 175-207; and Donald E. Stokes, ‘‘Spatial Models of Party
Competition,” American Political Science Review, 57 (June 1963), 368-377.
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allow the possibility that we cannot order the citizens’ policy preferences
so that they are all single peaked.

But single peakedness is a sufficient though not a necessary condition
for equilibrium. Hence, Black’s analysis does not preclude the possibility
of establishing weaker sufficient conditions; Tullock suggests such a
multidimensional condition and Plott formulates it explicitly.?
Reviewing a somewhat less general form of this condition without
attempting to do justice to its formal elegance, suppose (1) that the
election involves # issues; (2) that we can identify each citizen’s most
preferred position on each issue; and (3) that citizens do not all agree
as to what policies are most desirable. Then, if the electorate’s pre-
ferences are distributed symmetrically on each and every issue, and,
stated imprecisely, if all citizens weight the relative saliency of issues
identically, the mean preference is a majority-rule equilibrium.

The importance of this condition is not only that it extends Black’s
analysis, but also that it is the logical complement to many of the
theorems of spatial theory. Thus, theorems that establish the existence
of a multidimensional electoral equilibrium assume, typically, symmetric
- preference distributions and common patterns of issue saliency.

We generalize several of these theorems by departing from the
analyses of Black et al. in three ways. First, observe that the conditions
we review in this section assume that citizens choose deterministically
and that all citizens vote, except perhaps those who are absolutely
indifferent to the motions presented. That is, if 6 and ¢ are the election
alternatives, and if the citizen prefers 6 to «, then he votes for the
candidate who advocates ® with a probability of one. We assume,
however, that citizens choose probabilistically and that they can
abstain. Therefore, instead of assuming that if a citizen prefers 6 to ¢
he must vote for the candidate who advocates 6, we assume, for
example, that the citizen is more likely to vote for the candidate who
advocates 6 than for the candidate who advocates ¢, and that he might
abstain.®

? Black, Theory of Committees; Tullock, “Impossibility Theorem”; and Plott,
“Equilibrium.” .

8 A probabilistic model of individual choice in the context of rational decision-
making is not original with this essay—although the application of such a model to
spatial theory and the paradox of voting is. For a discussion of alternative inter-
pretations of probabilistic choice see the appendix to Niemi and Weisberg, “The
Effects of Group Size and Collective Decision-Making,” in Niemi and Weisberg,
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Second, we observe that, like single peakedness, the multidimensional
condition consists fundamentally of restrictions on the preferences
that citizens can hold. By requiring that the distribution of preferences
is symmetric, for example, constraints such as ““if the first m — 1 citizens’
preferences are distributed ..., then, to insure symmetry, the mt?
citizen’s preference must be . ..” are imposed. Rather than constrain
the distribution of preferences, however, we constrain the relationship
between the likelihood of the citizen’s choices and 6 and . Thus, we
might assume that the probability that the citizen votes for the candidate
who advocates 0 increases as his utility for 8 increases.

The final difference concerns the location of equilibria. Plott et al.
demonstrate with the symmetry assumptions not only that an equili-
brium exists but also that it is the mean citizen preference. If we add
these assumptions to our analysis, the social choice remains the mean
citizen preference. We present in Section vi however, a theorem that
establishes the mean as the equilibrium though it does not require that
the citizens’ preferences are distributed symmetrically. Moreover, we
‘offer in that section a numerical procedure for calculating the location
of equilibria in general.

II

A General Theorem from the Theory of Games

Before we describe our sufficiency conditions, we demonstrate the
logic of our formal analysis by noting the relevance of two-person game
theory to spatial theory. Assume that two candidates, one and two,
compete, and let 6 and ¢ denote their respective spatial strategies.
Since the return to a candidate depends on not only the strategy he
employs but also the strategy his opponent employs, the election is
a two-person game. If we assume that the payoffs to these candidates
are their expected pluralities, denoted by ¢,(6, ¥) and @,(6, ¢), the
game is zero-sum because ¢,(0, ) = —@y(0, ¥). And if we assume, as

eds., Probability Models of Collective Decision-Making (Columbus, Ohio: Charles
E. Merrill, 1972), 146-148. For a review of the tradition of this model in psychology—
the discipline in which it is most extensively employed—see, for example, Clyde
Coombs, Robyn Dawes and Amos Tversky, Mathematical Psychology (Englewood
Cliffs, N. J.: Prentice-Hall, 1970), chap. 5.
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is generally the case in spatial theory, that 6 and ¢ are con-
tinuous variables (for example, are measured on some segment of the
real line), the game is an infinite game. Thus, we can conceptualize
spatial competition between two candidates whose payoffs are expected
pluralities as a two-person, zero-sum, infinite game.

Pure minimax (“best of the worst”) strategies for such games are
strategies, say 6* and ¢*, that satisfy the following conditions:®

I e O VB SR
P2(0, $*) > ‘Pz(e*a $*) > ‘Pz(e*, ) if ¢ # P*

That is, (6%, $*) is an equilibrium strategy pair if neither player has
an incentive unilaterally to alter his strategy once the two players arrive
at this pair. Since @,(6%, $*) = ¢,(0, $*), player one might decrease
his payoff by shifting from 6* to some other strategy 6. Such a shift

® We are concerned in this essay only with pure strategy solutions since mixed
strategies make little or no sense in a theory of the electoral process. To see this we
must clarify the distinction between mixed strategies and strategies involving risk.
First, a pure stategy, 8, in our model is a specific position on each of » issues. A risky
strategy is a probability distribution over the set of pure strategies which the can-
didate, perhaps implicitly, tells the voter he will use in choosing a policy after the
balloting. Mixed strategies, however, concern only the mechanism by which some
pure strategy is selected. The decision to adopt a mixed strategy means that the
candidate selects a pure strategy probabilistically before the balloting and presents
some pure strategy to the electorate for approval. Thus, if the candidate chooses to
use a mixed strategy, he eventually presents the electorate with a pure strategy. It
does not seem reasonable now to suppose that candidates actually adopt mixed
strategies in a campaign: the inclusion of mixed strategies as an alternative means—
to apply the theory of games properly—that candidates reveal their pure strategies
simultaneously and that a candidate cannot alter his strategy once it is revealed
(for example, the payoffs are realized immediately). Obviously, however, payoffs are
not realized immediately in elections, and candidates attempt to change their
strategies if they are inferior to those of their opponents. We cannot imagine a
candidate adopting a mixed strategy which results in the selection of a pure strategy
that is inferior to his opponent’s strategy without his attempting to alter his position.
Since such inferior choices are entirely possible in the theory of games, we do not
consider mixed solutions to electoral competition. Also, we do not consider the
second general type of strategy that candidates might adopt—risky strategies—
because, given our assumption that utility functions are concave, it is relatively easy
to show that risky strategies cannot constitute an equilibrium. Consequently, our
search for equilibria is constrained to pure strategies. For an analysis of risky
strategies see Kenneth Shepsle, “The Strategy of Ambiguity: Uncertainty in Electoral
Competition,” American Political Science Review, 66 (June 1972), 555-568.
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provides no hope of a gain. Similarly, since @,(0%, $*) = @ (0%, ),
player two has no incentive to shift unilaterally from ¢*.

We can specify two constraints on two-person, zero-sum, infinite
games that guarantee the existence of a unique pure strategy pair
(0%, $*).10 These constraints are:

(i) ¢, and @, are everywhere continuous in 6 and ¢,
(ii) ¢, is concave in 6 and convex in ¢$; ¢, is concave in $ and
convex in 6.1

(Parenthetically, to avoid confusion, we note the distinction between
the analysis of finite and infinite zero-sum games. Finite games are
games in which the players have a finite number of pure strategies.
We can represent such games as a matrix in which the rows denote the
pure strategies of player one, the columns denote the pure strategies of
player two, and the entries of the matrix denote the payoffs to one or
both players. The classic result of the theory of two-person games—the
minimax theorem—is that every two-person, zero-sum, finite game
possesses at least one pair of pure or mixed strategies that satisfies (1).

10 For a more precise statement of the theorem, see R. Duncan Luce and Howard
Raiffa, Games and Decisions (New York: John Wiley & Sons, 1964), 452, and
Guillermo Owen, Game Theory (Philadelphia: W. B. Saunders, 1968), 78-81. While
several of our theorems follow directly from the results reviewed in these references,
our theorems concerning constrained strategies as well as the numerical procedure
we offer later for calculating equilibria follow from the analysis of J. B. Rosen,
“Existence and Uniqueness of Equilibrium Points for Concave N-Person Games,”
Econometrica, 33 (July 1965), 520~534. The proofs in our Appendix, then, are
directed primarily towards satisfying Rosen’s conditions.

11 By continuous we mean roughly that a graph of ¢; against 6 or ¢ contains no
instantaneous changes in value. By concave in 6 we mean that

?(60° + (1 — 90, 4) > £e(0,9) + 1 — H 0, §)

for all 8’, 8” and ¢, where 0 < ¢ < 1. By convex in ¢ we mean that,

@0, £ + (1 — HY) < €0, 9) + (1 — H 96, 9"

for all 8, ¢’, and ¢”. (For our analysis, strict inequality holds for some values of 6.)
Geometrically, a curve is concave if, for any two points on it, a straight line between
them never lies above the curve. And a curve is convex if, for any two points on it,
a straight line between them never lies below the curve. Hence, if we plot ¢, against 6,
the line connecting 6’ and 0” lies below the graph of ¢, in the interval [0, 67];
and if we plot ¢, against ¢, the line connecting ¢’ and " lies above the graph of ¢,
in the interval [¢’, ¢"].



162 THE JOURNAL OF POLITICS, VOL. 35, 1973

This result does not hold generally, however, for two-person, zero-sum,
infinite games. Nevertheless, if we impose (i), at least a mixed-strategy
equilibrium exists, and if we also impose (ii), a unique pure-strategy
equilibrium exists.)

As an important caveat to this result, suppose that the game is
symmetric. That is, suppose (1) that both players choose from identical
sets of strategies, and (2) that if the players exchange strategies, they
exchange payoffs, ¢,(8, ¢) = @s(, 6). Hence for such games, both
players possess the same equilibrium strategy (6* = ¢*), and in
equilibrium, they both receive the payoff of zero, that is, ¢,(6%, $*) =
(PZ(O*’ “p*) =0.

The relevance of these results to spatial theory is evident if we
retrace the correspondence between election competition and game
theory. The existence of pure minimax strategies for the game theoretic
model of election competition means that each candidate can find a
pure strategy that guarantees him some minimal payoff and from which
he has no incentive to move if his opponent also adopts a minimax
strategy. Furthermore, if the election is symmetric—a case that we
consider in greater detail later—both candidates can secure the expec-
tation of at least a tie, that is, ¢,(8%*, $*) = 0; if both candidates adopt
their equilibrium strategies, they converge, that is, 8* = *.

The relevance of these results to the paradox of voting is evident if
we let ¢,(6%, 6) denote the number of people who vote for 6* minus
the number of people who vote for 6. Assuming that (i) and (ii) are
satisfied and that the game is symmetricc we know now that
@,(6%,8) > 0 if 6* £ 6, 6* receives more votes than 6, and that 6*
is the only motion that can achieve majority approval against every
other admissible motion.

This correspondence among game theory, spatial analysis, and the
paradox of voting defines our objective: to establish assumptions about
the electorate’s calculus of voting which yield payoff functions that
satisfy conditions analogous to (i) and (ii) and that permit us to interpret
these conditions substantively.

III

A sufficient Condition for Equilibrium

Our sufficient condition for the existence of election equilibria
consists of two classes of assumptions. The first class concerns the
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utility that citizens associate with the candidates’ strategies; the second
class concerns the citizens’ decision calculus. First, let X =
(X1, X;, ..., X,) denote a position on each of » issues and let U(X/x)
denote the utility that a citizen associates with X, given that he most
prefers x = (x;,X3,..., X,).'2 Clearly, then, the utility function
U(X/x) is maximized at X = x. And if we let 6 = (6,,0,,...,0,)
denote candidate one’s position on each of the » issues, the function
U(0/x) is the utility the citizen associates with the election of candidate
one. Our first assumption concerns the form of the function U.

AssuMPTION Al: U(X/x) is continuous and concave in X.3

Stated in spatial terms, assumption A1 implies that the utility a citizen
associates with a candidate decreases at a constant or an increasing
rate as that candidate moves his strategy, 6, away from the citizen’s
most preferred position, x. Thus, with A1 we do not permit the citizen’s
utility function to ““level off,” so that he becomes indifferent between,
say, two ‘“‘conservative” policies that are far from his ideal. We note
by way of example that Al is satisfied if we measure utility loss simply
by spatial distance.

Constraint Al, however, is not sufficient to guarantee that the can-
didates’ payoff functions, ¢, and ¢, , possess the continuity, convexity,
and concavity properties we outline in the previous section. To generate
such payoff functions we must relate 8 and ¢ to a citizen’s choice with a
second class of assumptions. That is, a citizen may choose: (1) to vote
for candidate one; (2) to vote for candidate two; or (3) to abstain.
We must define the relationship between the candidates’ strategies and
the citizen’s choice of one of these three actions.

Recall that we establish with Al the relationship between the can-

12 Note that we write U as conditional on x. We adopt this notation because we
do not require the assumption that U has the same functional form for any two or
more citizens. Thus, even if two people prefer the same policies, we do not assume
that the forms of their utility functions are similar.

13 Thus, from the definition presented in fn. 11,

UEX' + (1 — HX'/x) > ¢UX'/x) + (1 — §) UX"/x)

For our theorems we require that this inequality be strict for some values of X’ and
X”. Also, we assume that the space of all possible strategies is compact. That is,
x; and X; vary only in some finite continuous interval such as [0, 1]. Substantively,
this eliminates strategies and preferences at + or — infinity.
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didates’ strategies, ® and ¢, and the citizen’s utilities, U(8/x) and
U(¢/x). Now we must define the relationship between the citizen’s
utilities and the probability that he chooses one of the three actions.
This establishes, somewhat circuitously, the relationship between the
strategies ® and ¢, and the citizen’s choice.

Since the number of assumptions that we might impose to define this
relationship is infinite, we limit our alternatives by appealing to some
behavioral heuristics. We wish to know what logical relationships
between a citizen’s utility for 8 and for ¢ and a citizen’s choice appear
reasonable. We answer this question thus:

(a) The probability that a citizen votes for candidate i increases or at
worst remains a constant as the utility he associates with candidate
i’s position increases.

(b) The probability that a citizen votes for candidate 7 decreases or
at best remains a constant as the utility he associates with can-
didate j’s position increases, i #% j.1

To formulate heuristics (a) and (b) rigorously, we denote the proba-
bility that a citizen votes for candidate one by p,(U(8/x), U(¢/x)), and
we denote the probability that he votes for candidate two by
p2(U(8/x), U(/x)). Two formal interpretations are consistent with
heuristic (a). First,

ASSUMPTION A2: p, increases as U(8/X) increases, and p, increases as
U(Y/x) increases.

Second, an alternative to A2 that also is reasonable and that captures
the intuitive idea behind (a) is,

ASSUMPTION A2': p, increases as U(8/x) increases if U(8/x) = U(Y/x);
otherwise p; =y, 0 <y <1, and p, increases as U(P/X) increases
if U(Y/x) = U(8/x); otherwise p, = y.

Note the difference between A2 and A2'. In A2, p, increases for all

14 For an empirical analysis that is explicitly designed to test these two hypotheses
and which strongly supports the first but only weakly supports the second, see Howard
Rosenthal, “Electoral Participation in the French Fifth Republic: The FY Vote,”
American Political Science Review, in press.
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values of 8 as U(8/x) increases, which is to say that the citizen’s pro-
bability of voting for candidate one, p, might never equal zero and is
subject to change for all values of 8. We assume, then, that the citizen
may have a nonzero probability of voting for candidate one, even
though he prefers candidates two’s spatial strategy, ¢, to candidate
one’s spatial strategy, 8 (we can require, however, that the citizen be
more likely to vote for candidate two than candidate one if he prefers
¢ to 8). Hence, we can interpret assumption A2 as permitting decisions
that appear irrational: a citizen might choose to vote for the candidate
who proposes the less preferred alternative. In lieu of relegating such
acts to the realm of the irrational, however, observe that it is difficult,
and perhaps impractical to represent many of the criteria citizens use
to evaluate candidates—such as the candidates’ personalities—in
spatial terms. Instead of attempting to conceptualize and to measure
such criteria so that we can represent them as spatial dimensions,
assumption A2 allows us to leave considerations like the candidates’
personalities as variables that are exogenous to a spatial analysis. Thus,
while the citizen prefers ¢ to 6 for the identified spatial dimensions,
he may vote for candidate one because of the positive weight he assigns
to the candidate’s personality. We require only that personality act as a
random variable so that the citizen votes for candidate one probabilisti-
cally.

Consider now assumption A2’. Again we can permit choices that
appear irrational by setting y > 0. Here, though, y is a constant.
Observe, however, that we can eliminate “irrationality” entirely with
A2 if wesety = 0. If y = 0, the citizen votes for candidate one only if
he prefers 6 to ¢.

Turning now to heuristic (b), we interpret this heuristic formally with
the following assumption.

ASSUMPTION A3: p, decreases or remains unchanged as U($/x)
increases, and p, decreases or remains unchanged as U(8/X) increases.

To achieve the desired form for the candidates’ payoff functions, we
add the following assumption that constrains further the relationships
among p, , p,, and U(8/x), U(¢/x) in assumptions A2, A2’ and A3:

ASSUMPTION A4: p, is concave in U(8/x) and convex in U(P[x), and
Ds is concave in U(P[x) and convex in U(8/x).
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We demonstrate in subsequent sections that two relationships
between the citizen’s over-all probability of voting, p, + p,, and his
utilities for each candidate’s position, U(8/x) and U({/x), that other
spatial models describe as alienation and indifference, are consistent
with our assumption.’® Specifically, we show that assumptions A2
through A4 permit us to use the alienation and the indifference
hypotheses as descriptions of a citizen’s calculus of voting either
separately or simultaneously. But before we examine the substantive
implications of these assumptions in greater detail—especially A4,
which we cannot interpret readily without recourse to examples—we
present the theorems that establish the existence of equilibrium stra-
tegies.

Our first theorem pertains to candidates that maximize their expected
plurality:

THEOREM 1: If each candidate maximizes his expected plurality, and
if either assumption set A1, A2, A3, and A4 or assumption set
Al, A2' A3, and A4 holds for all citizens, then a unique pure strategy
equilibrium exists.

That is, if we let @48, ¢) denote candidate i’s expected plurality, there
exists a strategy pair (8%, ¢*) such that expression (1)—the minimax
condition—is satisfied.

From the perspectives of spatial theory and the voting paradox,
however, a most important corollary to Theorem 1 is,

COROLLARY 1.1: If in addition to the conditions of Theorem 1, p, and p,
are of identical functional form for each citizen, then 8% = *.

Hence, if we denote the common value of 6* and ¢* by a (i.e., 8% =
$* = a), then from (1),

15 For explicit spatial formulations of indifference and alienation, see Davis,
Hinich, and Ordeshook, “Expository Development,” on alienation, Hinich and
Ordeshook, “Abstentions and Equilibrium in the Electoral Process,”” Public Choice,7
(Fall 1969), 81-106; on indifference, Ordeshook, ‘“Some Extensions to a Mathe-
matical Model of the Electoral Process,” Midwest Journal of Political Science, 14
(February 1970), 43-70; and Richard McKelvey, ‘“Some Extensions and Modifica-
tions of a Spatial Model of Party Competition” (unpublished Ph.D. dissertation,
University of Rochester, 1972). These two hypotheses are also described by Gerald
Garvey, “The Theory of Party Equilibrium,” American Political Science Review, 60
(March 1966), 29-38.
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Pua, @) =0 > gy0,0) if B+£a
(P2(a'9 a) = 0 > (Pz(“, "p) lf 4‘ 7& o

That is, if both candidates are at « and if either candidate shifts uni-
laterally from a, his expected plurality does not increase. It may decrease
and become negative.

Theorem 1 states a sufficient condition for the existence of a unique,
pure-strategy equilibrium in a two-person, zero-sum, infinite game:
the conditions of Corollary 1.1 guarantee that the two players share the
same equilibrium-strategy solution. With respect to the paradox of
voting, then, this corollary yields a sufficient condition for the existence,
in a multidimensional issue space, of a unique alternative that defeats
all other alternatives in a majority vote. Interpreting this result for
spatial theory, the assumption that p, and p, are of identical functional
form means that citizens evaluate the candidates only on the basis of the
candidates’ spatial positions, that is, that the citizens are not biased in
favor of one candidate or the other. Thus, if the conditions of Theorem 1
hold and if citizens are unbiased, Corollary 1.1 states that a unique
electoral equilibrium exists such that the candidates adopt identical
strategies, that is, they converge.

Our second existence theorem pertains to candidates that maximize
their expected vote,

THEOREM 2: If each candidate maximizes his expected vote and if
assumptions Al, A2, A3, and A4 hold for all citizens, then a unique
pure-strategy equilibrium exists. '8

Additionally, we prove a corollary to Theorem 2 that parallels
Corollary 1.1.

16 In addition to assumptions Al through A4 we also require for uniqueness for
vote maximization that,

azpl . 32P2 _ o°p, 0%p, 2
UG U OF [ + ] >

oU(8/x) oU(Y/x) oU(Y/x) oU(O/x)
Note that this condition is satisfied if the cross-partials of p; are zero; that is, if the
rate of change in a citizen’s probability of voting for one candidate is independent of
the other candidate’s strategy. Any further attempt to interpret this condition
substantively is probably hopeless. Hence, of those functions that satisfy Al through
A4, we consider only examples that satisfy this condition, except for example (5).
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COROLLARY 2.1: If, in addition to the conditions of Theorem 2,
P, and p, are of identical functional form for each citizen, then
0% = ¥,

Theorems 1 and 2 state that our assumptions are sufficient for the
existence of an electoral equilibrium with either plurality or vote
maximization while their corollaries establish sufficient conditions for
the candidates to converge to identical strategies. Observe, however,
that in both theorems we permit the candidates to adopt any strategy.
This is the assumption that analyses of electoral equilibria and the
paradox of voting generally employ. Downs, however, suggests that the
candidates are frequently constrained so that they cannot cross each
other on a dimension.'? If candidate one is identified by the electorate
as being prolabor, for example, candidate two might be unable to
convince the electorate that he is more prolabor than his opponent.
Or, for another example of a constraint, a candidate’s position on one
issue may constrain his freedom of choice on a different issue. Thus, if a
candidate has a strong position on law and order, a citizen might not
perceive him to hold a liberal position on civil rights.

To incorporate such possibilities into our analysis, suppose that each
candidate’s strategy choice is constrained in R > 1 ways. Specifically,
assume that,

) G(6,¢) >0 for r=1,2,..., R, where each G, is
concave in 6 and .18

To illustrate (2), suppose that a single constraint is imposed, namely
that the candidates cannot cross each other on issue i. For example,
suppose that 6, and ; must satisfy 6, < ;. Thus, G,(8, $) =
¢, — 0; > 0. Alternatively, if the candidates cannot cross on any issue,
we can let G,(6, ) = ¢ — 6 > 0. As a second illustration, suppose

17 Anthony Downs, An Economic Theory of Democracy (New York: Harper and
Row, 1957), chap. 8 and 9.
18 That is,

G(£0" + (1 — 0", ) > €GO, ) + (1 — §) G(6”, §)
and

G0, (" + (1 — H YY) > 660, 9) + (1 — £ GO, ¢")

To show that our examples satisfy these conditions, consider ¢ — 6 > 0. First, if we
expand
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that the only constraint imposed is that a candidate’s position on one
issue constrains the positions he can take on some other issue. Specifi-
cally, let 8, — 6; > 0. Hence, if candidate one adopts a liberal position
on issue i (denoted by negative values of 6,), he must adopt at least an
equally liberal position on issue j (denoted by negative values of 6;).
Thus, G,(8, $) = §; — 6, > 0. Finally, since we can have any number
of constraints, we are able to impose both of our examples of constraints
simultaneously; that is, we can let R =2, G0, ¢) =¢ — 06 >0
and Gy(6, ) =0, — 0, > 0.

We propose, then, to use (2) to represent formally the constraints
on the candidates’ strategies that usually characterize elections. The
first theorem pertains to plurality maximizing candidates:

THEOREM 3: If the conditions of Theorem 1 hold and if (2), a unique
pure strategy equilibrium exists.

Similarly, for vote maximizing candidates,

THEOREM 4: If the conditions of Theorem 2 hold and if (2), a unique
pure strategy equilibrium exists.

Thus, even with the impositions of constraints, an equilibrium exists,
provided these constraints satisfy (2).

Finally, if we assume that the conditions of Corollaries 1.1 and 2.1
hold and assume that (2) does not prohibit the candidates from con-
converging, (that is, G,(x, x) > O for all x), then for plurality-maximi-
zing candidates:

COROLLARY 3.1: If, in addition to the conditions of Theorem 3 and
Corollary 1.1, G(x, xX) == 0 for all X and r, then 6* = {*.

and for vote-maximizing candidates,

$—[60—(1—90] = ¢ — 01+ (1 — HIY — 6]
we find that strict equality holds. Similarly, strict equality holds for
[ — (0 —HYP"1— 6> £ — 0]+ (1 — HY” — 6]

Hence, ¢ — 6 > 0 is an admissible constraint. Similarly, we can show that
0; — 0; > 0is admissible.



170 THE JOURNAL OF POLITICS, VOL. 35, 1973

COROLLARY 4.1: If, in addition to the conditions of Theorem 4 and
Corollary 2.1, G(x, X) = 0 for all x and r, then 8* = ¢*.

Thus, if the candidates converge without any constraints on their
strategies, and if we impose constraints that satisfy (2) but that do not
prohibit convergence, then the candidates converge.

Iv

Some Unnecessary Assumptions

The conclusion that a unique equilibrium exists may not surprise
many readers. After all, if we make enough assumptions, we can prove
almost anything. In this section, therefore, we consider the assumptions
that we do not use in the proofs of Theorems 1 through 4 and their
corollaries, but that previous spatial analyses employ.

First, recall from our discussion in Section 1 that one of the conditions
for the existence of an equilibrium which Plott and Tullock present is:
the electorate’s preference density, f(x), is symmetric. Similarly, the
results reported in ‘“An Expository Development of a Mathematical
Model of the Electoral Process” pertain predominantly to symmetric
densities and frequently to only symmetric unimodal densities. But we
do not impose such restrictions on f(x), which is to say that f (x) can be a
unimodal, a bimodal, or a multimodal density as well as a symmetric
or a nonsymmetric density.*®

A second unnecessary assumption concerns the form of a citizen’s
utility function. In other multidimensional spatial models, for example,
a citizen’s utility function is

U@/x) = A — B z (re — 62,

1% However, a constraint of a different sort must be imposed. Since p, is concave
in U(8/x) and convex in U(Y/x), the mathematical possibility exists that p, or
D1 + p. is less than 0 or greater than 1. Because such probability numbers make no
sense, we must constrain either f(x) or U. This constraint can be derived from
expression (13A) in our Appendix and expressed rigorously as a function of the
variance of f(x) and the first and second derivatives of U. Briefly, this constraint
can be interpreted to mean that the variance of f(x) or the relative saliency of an
issue cannot be “too great.” In lieu of presenting the complex mathematical form
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where A and B are positive constants.?’ To assume, however, that this
expression characterizes utility functions requires that the utility
function U(8/x) be symmetric. That is, the loss a citizen incurs if
a candidate shifts one unit to the left of his ideal preference, x, equals
the loss he incurs if the candidate shifts one unit to the right of x.
According to previous models, then, a citizen cannot most prefer a
moderate policy while his remaining preferences are biased either to the
right or to the left. Assumption Al imposes concavity—an assumption
that our above example satisfies—but it does not impose symmetry.

A far more important series of assumptions that we do not impose
concerns the electorate’s conformity (1) to a pattern of issue saliency,
and (2) to a calculus of voting. Nearly all of the theorems pertaining
to multidimensional spatial competition assume that all citizens weight
the relative saliency of the issues identically. Hence, one subset of the
electorate cannot care primarily about civil rights while another subset
cares most about farm subsidies. Theorems 1 through 4 and their
corollaries, however, do not require any assumptions about issue-
saliency patterns that we might find in any electorate. Thus, some
citizens can be concerned primarily with farm subsidies while some other
subset of the electorate might study only the candidates’ positions on
civil rights, unemployment, or war, and yet other groups are concerned
with several of these issues simultaneously. Stated differently, while each
citizen’s utility function must be concave, the functional form of a citizen’s
utility function can be entirely different from that of any other citizen.

Second, recall that the conditions for equilibrium that we review
in Section 1 assume that all citizens employ identical decision rules:
they all vote. Similarly, all citizens must still employ an identical
calculus of voting in those theorems of spatial analysis that permit
citizens to abstain because of alienation or because of indifference.
Generally, indifference cannot explain abstention for one subset of
the electorate while alienation explains abstention for some other subset.
Furthermore, if two citizens share the same ideal preference, they must
vote with the same probability. Our theorems do not suppose that the
citizens all share the same calculus of voting. Manifestly p; can be an

of this constraint, however, we simply note its existence and the necessity of making
sure that all the probabilities lie in the interval [0, 1].

20 For a discussion of the quadratic metric in the context of spatial theory see
Davis, Hinich, and Ordeshook, “Expository Development,” 429-436.
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entirely different function for each citizen. Some citizens can abstain
because of indifference, others because of alienation, and still others
because of some combination of indifference and alienation. And if
two citizens both abstain for identical reasons, one citizen’s choice can
be more sensitive to the candidates’ strategies than the other citizen’s
choice. Hence, if two citizens share the same ideal preference, we do not
require that they vote for a candidate with the same probability.

Finally, recall that in spatial theory the candidates’ labels are inter-
changeable. That is, if initially candidates one and two adopt 6 and ¢
respectively, and if they switch strategies so that candidate one is now
at ¢, candidate one’s plurality equals the plurality candidate two
received when he was at . This feature of spatial theory can be inter-
preted to mean that citizens are cognizant only of the candidates’
spatial strategies: they vote for candidate one if he is at ¢ with the same
probability that they vote for candidate two if he is at . But in
Theorems 1 through 4, it is unnecessary to assume that p, is the same
function as p, . Hence, a citizen can be more sensitive to variations in
candidate two’s strategy. Or, a citizen can vote for candidate one with a
low probability even though 6 is close to x, because this candidate is a
Republican or because he finds the candidate’s public image distasteful.
But if candidate two is at 0, the citizen votes for two with a high pro-
bability because two is a Democrat or because the candidate’s public
image attracts the citizen. Finally, and in accordance with our previous
discussion, some citizens can be biased in favor of candidate one while
others are biased in favor of candidate two.2! Note that this permits us to
have a situation in which the entire electorate, or at least some majority
of the electorate, is biased in favor of candidate one so that, although
a pure strategy equilibrium solution exists, candidate one can secure
the expectation of a positive plurality.??

Our freedom to assume that citizens in our model are biased leads

21 We must emphasize, however, that our formulation of bias is not the same thing
as cognitive balance. That is, we continue to assume that all citizens behave as if they
make identical estimates of 6 and ¢». Our notion of bias is that if 8 = ¢, for example,
the probability that a citizen votes for candidate one can exceed his probability of
voting for candidate two.

22 To see this, recall that the value to a player of a zero-sum game is not necessarily
zero. For example, in the zero-sum game we illustrate below (in which payoffs
are to player one), the value of the game to player one is —2.
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us to question the generality of some results from earlier spatial anal-
yses. Specifically, it is typically the case in those studies that plurality-
maximizing candidates converge if the electorate’s preferences are
distributed unimodally. These analyses assume, however, that citizens
have no biases. But if the function p, is not equivalent to the function p,
because of the presence of such bias, we cannot guarantee that the
candidates converge. Consider, for example, an election in which: (1)
the electorate’s preferences are distributed unimodally; (2) citizens are
concerned with one common issue; and (3) citizens with ideal pref-
erences to the left of the mean are biased in favor of candidate one
while citizens to the right of the mean are biased in favor of candidate
two. There is no reason to suppose now that 6* = ¢*. The equili-
brium probably is 6* < ¢* because a candidate is not likely to cam-
paign to mobilize those citizens that do not, in any circumstance,
respond to his overtures. Rather, he prefers to maximize the turnout
of his potential source of votes. Thus, nonuniform distributions of bias
can yield equilibrium solutions in which two plurality maximizing can-
didates fail to converge, although the over-all distribution of preferences
in the electorate is unimodal. We can infer from this possibility that if
partisan attachments bias p, and p, , and if party identification correlates
with preferences on an issue, an equilibrium exists, but the candidates may
not converge.

The weakening or elimination of the assumptions that we review
in this section necessarily involves incurring a cost—specifically, our
concavity and convexity assumptions, especially A4. Since at this point
there is little empirical research that we can use to measure and evaluate
these costs, in the next section we explore the properties of our assump-
tions with some examples of admissible formulations of a citizen’s
calculus. '

Player Two
B B:
oy -5 —6

Player One
oy -2 -1




174 THE JOURNAL OF POLITICS, VoL. 35, 1973
\%

Some Examples of Admissible Formulations of a Citizen’s Calculus

Perhaps one of the more surprising conclusions of our analysis is that
if p, = p,—if citizens are not biased so that they act only on the basis
of the candidates’ spatial strategies—the candidates converge for all
densities of preference. That is, an unbiased electorate guarantees that
both plurality-maximizing and vote-maximizing candidates converge
if f(x) is either a unimodal or a bimodal density. We can use this result
to explore the properties of our assumptions. Because previous spatial
analyses show that when citizens abstain because of alienation, plurality-
maximizing candidates may fail to converge if preferences are distri-
buted bimodally, and vote-maximizing candidates may fail to converge
if preferences are distributed unimodally, it is evident that our formula-
tion of alienation differs from previous formulations.

First, by alienation we mean that a citizen’s probability of voting
decreases as the utility he derives from his most preferred candidate’s
strategy decreases. Previous spatial analyses incorporate this hypothesis
in this way: (1) let g denote the probability that the citizen votes for
candidate one; (2) assume that g increases as U(8/x) increases if

FIGURE 1
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FIGURE 2

Py
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U(8/x) = U(¢/x); (3) assume that g = 0 if U(8/x) < U(P/x). We
illustrate in Figure 1 a typical function that satisfies these assumptions.
We emphasize two properties of this function:

(1) g drops sharply from a positive value to zero at x = (6 + ¢)/2:
citizens are perfectly discriminating in the sense that if the citizen
prefers 8 to ¢, that is, if U(6/x) > U(¢/x), the citizen has a zero
probability of voting for the candidate whose position is ¢.

(2) g is not everywhere concave: if x is far from 6, g is convex.

We could show readily that the function g fails to yield payoff functions
that satisfy conditions (i) and (ii) for a unique pure-strategy equilibrium.
With g the payoff functions are neither continuous nor concave. Thus,
there is no reason to expect that the theorems about spatial competition
that use g conform to the theorems in this essay.

To see how alienation can be formulated so that it is consistent with
assumptions Al through A4, let,

p1 = alU(O/x)];
® P2 = alU($/9)];
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(da/dU = 0 and d?%a/dU? < 0 so that a can be either a function or a
positive constant).2® We illustrate the function p, in Figure 2.

Note that unlike the function we illustrate in Figure 1, p, is greater
than zero and is concave for all 8. That is, a citizen retains a positive
probability of voting for the candidate whose position is 6 even though
his utility for ¢ is greater than his utility for 8. Additionally, we see that,
while a citizen’s over-all probability of voting,

P1 + p2 = alU(6/x)] + a[U(¢/x)],

increases as U(0/x) increases, it also increases as U(¢/x) increases.
Hence, in this formulation of alienation, a citizen’s probability of
voting is a function of both candidates’ strategies.

We cannot express a preference either for a formulation of alienation
that conforms to (3) or for a formulation such as the one we illustrate
in Figure 1 without some empirical evidence. Unfortunately, this
evidence is not now available. It is plausible, however, that neither
formulation is right or wrong, but rather that they are more or less
applicable in varying situations. For example, (3) may be more appli-
cable for analyzing elections in which many nonspatial considerations
affect citizens’ choices, or in which our measurement of spatial consi-
derations is imprecise. Thus, in our abstract representation, a citizen
can vote for candidate one although he prefers ¢ to 6. Alternatively, a
formulation such as g seems more appropriate for elections in which
measurement is precise, in which only known spatial considerations
are relevant, or in which the known spatial considerations are very
salient. If these conditions are satisfied, it seems more reasonable to
assume that citizens vote only for candidates whose positions they
prefer.

But we can answer the question we set out to answer; we can identify
the logic of convergence if f (x) is a bimodal density and if we assume (3)
holds. Consider an extreme example of a bimodal density—a density

23 We assume, of course, that given the functional form of U, a is constrained so
that 0 < p; < % for all 0 and ¢ (if p; > 3, the citizen’s over-all probability voting
exceeds 1 whenever x = 6 = ). For example, suppose the 6 varies between 0 and 1,
that a is a positive constant, and that U(6/x) = 1 — (x — 6)%. Then, we must have
0<a—a(x—0)?<4%.If x=0, this condition requires that 0 < a < }. In
all subsequent examples we assume our constants or functions do not permit
probabilities to be less than O or greater than 1.
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FIGURE 3
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in which citizens prefer either of two distinct policies. Representing this
density in Figure 3 by two vertical lines, we graph also two curves for
pr—one for § = 6§’ and the other for § = 6" such that §' < 6".

Observe now that as candidate one shifts from ' to 6" he loses
support among citizens preferring x*, though he gains support among
citizens preferring x**. A few pencil exercises reveal, moreover, that the
concavity of p, guarantees that the rate at which the candidate gains
the support of citizens at x** exceeds the rate at which he loses the
support of citizens at x*, that is, di* — d¥* > d;* — d,* (in Figure 3).
Hence, both vote-maximizing and plurality-maximizing candidates
prefer a strategy closer to the mean than to a mode—they prefer §” to ¢'.

Contrasting this result with that obtained from formulating alienation
in terms of the function g, notice that with g a shift from 6 to 6"
succeeds only in losing the support of citizens at x*: since g = 0 for all
citizens whose preferences lie to the right of the midpoint between the
candidates’ strategies—(8 + )/2—the candidate secures no additional
support from citizens at x**. Thus, the candidate prefers the mode of
f(x) rather than its mean.

Our assumptions about p; do not.constrain us, though, to formulate
a citizen’s calculus as (3). First, observe that (3) limits the maximum
value of p; to one-half; otherwise, the citizen’s over-all probability of
voting, p, + p,, exceeds one if x = 6 = . To permit larger limits
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on p; , assume that the probability that the citizen votes for candidate
one, p, , is a function of the utility he associates with candidate two’s
strategy, U(¢/x), as well as a function of the utility he associates with
candidate one’s strategy, U(8/x). That is,

@) py = alU(8/x)] — b[U($/x)] + K;
p2 = a[U($/x)] — b[U(8/x)] + K;

(in which da/dU > 0, db/dU > 0, d?a/dU? < 0, d%b/dU? < 0, and
K > 0; and again, a and b can be either functions or positive constants).
We illustrate p, for several values of ¢ in Figure 4.

The difference between examples (3) and (4) is that if we assume (3),
a citizen’s probability of voting for a candidate is a function only of that
candidate’s strategy. If we assume (4), p, again increases as 6 approaches
the citizen’s ideal preference, x; but p, is a function of ¢ also, since it
decreases as ¢ approaches x.

Observe now that examples (3) and (4) are not consistent with the
hypothesis of abstention because of indifference (or cross-pressures)
—the hypothesis that a citizen’s probability of voting decreases as the
utility difference between the candidates’ positions decreases. With
example (3), the citizen’s over-all probability of voting equals

FIGURE 4
Py

U'/x) >U0@"/x) >0 /x)
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P+ pe = a[U(O/x) + U($/x)],
whereas with example (4), it equals
P+ ps = (@ — DIU®/x) + U($/x)]

(assuming that g and b are constants). For both examples, p, + p,
increases as either U(8/x) or U(¢/x) increases, which is to say that the
citizen’s probability of voting does not decrease necessarily as the
difference between these utilities decreases.

To formulate indifference in our model, observe that examples (3)
and (4) are both derived from assumptions A2 and A3. We obtain (3)
by deleting the words “‘decreases or” from A3, in which case our
assumptions about p; read: “p, increases as U(8/x) increases and
remains unchanged as U(J/x) increases.” We obtain (4) by deleting the
words “or remains unchanged” from A3, in which case our assumptions
about p, read: “p, increases as U(8/x) increases and decreases as U(¢J/x)
increases.” These examples are not consistent with assumption A2,
however, because they do not force citizens to have a zero probability
of voting for candidates whose positions they do not prefer. Assumption
A2’ permits such probabilities, and with it we can model the hypothesis
of indifference thus:

(52) py = blU®/x) — U($/x)] if U®/x) = U(Y/x),

=0 otherwise;
(5b) pe = b[U(Y/x) — U@®/x)] if U(y/x) = U(6/x),
=0 otherwise.

(b is a positive constant). We illustrate this formulation in Figures 5a
and 5b. Observe that with example (5), a citizen’s probability of voting
is either p, or p, because the citizen votes only for the candidate whose
position he prefers. And, since either p, or p, decreases as the utility
difference between the candidates’ positions decreases, (5) conforms to
indifference.*

2¢ We can show that with the appropriate substitutions for U, (5) closely parallels
a formulation of indifference considered elsewhere. Specifically, assume that U is
the inverse of the quadratic metric and to simplify exposition, that the election is
unidimensional. Let

U®/x) = A — B(x; — 0%
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FIGURE 5a

Suppose now that citizens abstain because of both alienation and
indifference. We can combine these two hypotheses into a single
assumption thus:

p1 = £alU(8/x)] + (1 — &) b[U(8/x) — U($/x)]
if U(8/x) = U(Y/x),
= £a[U(8/x)] otherwise;

pe = Ea[U(Y/x)] + (1 — &) b[U($/x) — U(8/x)]
if U(y/x) = U(9/x),
= £a[U(Y/x)] otherwise;

(©6)

U/x) = 2 — Blx, — 4

Assuming that the citizen prefers 6, to ¢, , we substitute these identities into (5a)
and obtain,
Py = —bBl6,2 — Y% + 2xy, — 2x,6,]
—2bBI(6:2 — $1®/2 — x1(6, — )]
26B1(6, + $1)/2 — x11(y — 6).

The probability p, now exhibits two properties. First, since 268 > 0 by assumption,
the citizen’s probability of voting for the candidate whose position is 8, decreases
as (¥, — 0,) decreases, ceteris paribus. Second, p, decreases as the midpoint between
the candidates’ strategies, (6, + #,)/2, approaches x, . Except that p, is concave in
8, and convex in ¢, , this is identical to the formulation of indifference illustrated by
Figure 7 for concave (convex) utility (loss) functions in Ordeshook, “Some Exten-
sions,” 55-56.
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FIGURE 5b
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(where 0 < ¢ < 1). Hence, if the citizen prefers 8 to ¢, his over-all
probability of voting equals,

p1 + pe = EalU®/x) + U/X)] + (1 — £ b[U®/x) — U(/X)]

(letting @ be a constant). As the alienation hypothesis suggests, this
probability tends to increase as either U(8/x) or U(¢/x) increases
(because of the influence of the first term to the right of the equality
sign). But, as the indifference hypothesis suggests, this probability
decreases as the utility difference between U(8/x) and U(¢/x) decreases
(because of the influence of the second term). Furthermore, we can
adjust the relative importance of alienation and indifference by varying
the magnitude of £.

We could continue constructing examples of p,—perhaps by imagin-
ing some relationship between 6 and ¢ and a citizen’s calculus of
voting unlike alienation or indifference or by devising some alternative
formulations for these two hypotheses. Let us turn, however, to the
problem of identifying the location of an electoral equilibrium in our
model.

V1

The Location of 0* and $*

To this point our analysis focuses on the problem of ascertaining
whether or not an electoral equilibrium exists. We note in our first
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section, though, that analyses of the voting paradox and spatial theo-
ries confront two problems: (1) ascertaining sufficient conditions for the
existence of an equilibrium, and (2) ascertaining the location of the
equilibrium. Having concluded our discussion of the first problem, we
turn now to the second.

We begin by observing that three distinct approaches to this problem
are available. First, we can seek a general method—a numerical
procedure—to locate the equilibrium. Second, we can reintroduce the
assumptions of previous analyses—assumptions such as symmetric
preference distributions and common patterns of saliency—and see if
the equilibrium is the mean in our model as it is in other models. Third,
we can attempt to generate a new condition that establishes the equili-
brium at some particular point such as the mean preference. We con-
sider in this section all three approaches.

Turning first to the construction of a numerical procedure for
ascertaining the location of an equilibrium, we observe that unless we
are willing to admit additional assumptions about the density of
preferences, U(6/x), or p;, general sentences as to the location of
equilibrium strategies are unlikely: far too many variables like the
nature of citizens’ biases are unspecified. Instead, we must approach
our task in any election from a perspective closely akin to engineering.
That is, we must ascertain the distribution of preferences, the form of
citizens’ utility functions, the biases of citizens that p, reflects, and the
constraints on the candidates’ strategies. Then, by applying suitable
numerical procedures we can attempt to calculate the equilibrium
solution. (Parenthetically, we note that this approach parallels the
analysis of two-person, zero-sum, finite games. In that analysis, the
minimax theorem establishes the existence of an equilibrium-strategy
pair, but, given the admissible variety of forms of such games, it does
not identify the equilibrium. Instead, from the correspondence between
these games and linear programming, we know that the Simplex
method for solving linear programming problems can be interpreted as
a numerical procedure for calculating minimax strategies.)®® The
particular relevance of our theory here is that: first, it identifies the
theoretical variables that must be measured; second, it tells us that what
we are attempting to calculate exists. Hence, we know that we are not

% For a discussion of this correspondence see, for example, Luce and Raiffa,
Games and Decisions, 408-446; Owen, Game Theory, 38-70.
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applying our numerical procedures to a fruitless search. Finally, the
method we use to prove our theorems in the Appendix to this essay
permits us to employ a general numerical procedure for calculating
equilibria. Specifically, we know that if the candidates initially are at
any pair of positions, say 6, and ¢, , and if they alter their strategies
in accordance with the rule,

(7) del/dt = aa@l/agl i= 1, N () > 0
df;ldt = adgy|df; j=1,...,n,a>0,

they converge to (6*, $*) in the limit.2® That is, if we permit the can-
didates to alter their strategies continuously on each issue and if the
candidates alter their strategies in a way that increases their pluralities
at the fastest rate, they converge to the electoral equilibrium.?” (We
refrain at this point from attempting to interpret this result substantively
—that is, asserting that candidates might alter their strategies in accor-
dance with (7)—but such an interpretation—speculation—is attractive.)
Assuming, then, that our calculations make use of some sort of
computer simulation, we can locate our candidates at any initial

26 A similar expression can be formulated if the candidates maximize their expected
vote. For such candidates, however, we must assume that the condition identified
in fn. 16 is satisfied. Observe also that we must modify (7) so as to specify an optimal
path if one or more of the candidates bumps into the constraints we use in Theorems 3
and 4, that is, if the candidate prefers to violate (2) but is restricted from doing so.
Briefly, we assume that the first candidate adjusts his positions as follows (a similar
function can be formulated for candidate two):

db; o9, a oG,

a0 5, 1

a o, § " 06,
= a6, ¢, §)

.« . . n .
where 8 is chosen to minimize [ a,%]*/2 subject to
=1

8 >0 if Go=0

Formidable as this condition might appear, it has a simple interpretation. Specifically,
if a candidate runs into a constraint, he proceeds along the constraint boundary in
the optimal direction until some admissible move of the constraint increases his
plurality at a faster rate. If this latter possibility occurs, the condition reduces to (7).

27 Rosen, “Existence and Uniqueness,” 532-533, also offers an approximation to
this process which permits the candidates to make discrete rather than continuous
moves.
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strategy pair (8, , ,). We can then let the simulated candidates alter
their strategies in accordance with (7) with the guarantee that the can-
didates converge to the pure strategy equilibrium (8%, ¢*).

It is satisfying to know that a general numerical procedure exists for
calculating equilibria, but it is also desirable to search for conditions
under which the location of the equilibrium is at some readily identi-
fiable point, such as the electorate’s mean preference. We approach
this search, first, by considering the multidimensional condition for
equilibrium that we reviewed earlier. Specifically, assume that the
electorate’s distribution of preferences on the issues, f(x), is symmetric
on each issue and that citizens who prefer diametrically opposed
positions on every issue share a common pattern of saliency for all
issues. Our theorem is:

THEOREM 5: If the conditions of Theorem 1 and Corollary 1.1 or the
conditions of Theorem 2 and Corollary 2.1 hold, then, if f(X) is
symmetric and if U(X|—x) = U(—X/x) for all X and x, the unique
pure-strategy equilibrium for both plurality- and vote-maximizing
candidates is the mean preference of the electorate.

We cannot regard Theorem 5 as a surprising result. It reaffirms the
conclusions of the spatial-analysis theorems that impose symmetry also.
It is interesting, then, to see if we can formulate a condition that does
not require symmetric densities of preference, thereby permitting us to
offer a new condition for the convergence of candidates to the mean.
We offer the following theorem:

THEOREM 6: If the conditions of Theorem 1 and Corollary 1.1 or the
conditions of Theorem 2 and Corollary 2.1 hold, then, if op,/90; and
0p,|00; are linear functions of x for all ® = §, the unique pure
strategy equilibrium for both plurality- and vote-maximizing
candidates is the mean preference of the electorate.

Unfortunately, unlike a condition such as symmetry, the central
condition of Theorem 6 conveys little, if any, substantive meaning.
Clearly, it is difficult to see what constraints on a citizen’s utility
function and on p; we require before dp;/d6; is assured of being a linear
function of x. Instead of providing an interpretation in the body of this
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article, we have judged it best to relegate the explanation to a nota.?®

CONCLUSIONS

Our primary objective in this essay is to formulate a new class of
sufficient conditions for the existence of a majority preference and then
to apply these conditions to a spatial analysis of electoral competition.
By focusing on a citizen’s calculus of voting rather than on the distri-
bution of preferences or patterns of issue saliency, and by assuming
that the postulate of rational choice leads to probabilistic rather than
deterministic decisions, we construct a theory that either eliminates or
weakens several assumptions other spatial analyses of electoral equili-
brium employ. Our theorems and corollaries do not, of course, render
these prior analyses obsolete. Our theory, for example, does not permit
everyone to vote if citizens choose deterministically. We must continue,
then, to regard the analysis of Black et al. as an admissible base
upon which to construct a spatial model. Nor does every plausible
formulation of a citizen’s calculus satisfy our assumptions: the function
g, which we illustrate in Figure 1, for example, fails to satisfy A4.

28 The function w,(x) = a, + a,x illustrates a linear function of x. That is,
wy(x) does not contain any term that involves powers of x greater than 1. Alter-
natively, wy(x) = a, + a,x + a,x? is not a linear function because it contains the
term a,x2. To ascertain whether or not the conditions of Theorem 6 are satisfied,
then, we must know something about the functional forms of p; and U. Suppose p;
satisfied (3), where a is a positive constant. Additionally, assume that each citizen’s
utility function is the inverse of the quadratic metric. Thus,

Pr= @ — aBlG — 6 -+ Gy — 0)F + -
Differentiating p, with respect to 68; yields

9,
S — 2aB(x; — 0) = —2aB6; + 2apx,
]
By letting wy(x) = op,/20;, a, = —2aB, we can readily see that op,/06; is a linear

function of x; . Hence, if all citizens vote according to (3) and if the inverse quadratic
metric characterizes their utility functions (note however that a and B cannot be
functions of x which is to say that all citizens must weight the relative saliencies of
the issues in an identical fashion), the conditions of Theorem 6 are satisfied. Thus, we
have one intuitively appealing condition under which the candidates converge to
the electorate’s mean preference even though f(x) is not symmetric. We must
note, however, that examples (4) and (5) do not satisfy the conditions of the theorem.
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Hence, we must regard an analysis that utilizes such a function as an
alternative to our theory. This point deserves special emphasis since,
with g, vote-maximizing candidates may adopt distinct strategies while,
with our assumptions, such candidates converge.

Clearly, then, we have several assumptions to choose from in spatial
theory. Frequently, alternative combinations of assumptions yield
equivalent theorems, such as the proof that the mean is the social
choice if f(x) is a symmetric, unimodal density and if the candidates
maximize plurality. But for different situations, as when the candidates
maximize votes, the choice of an assumption can be critical. Some
empirical evidence exists already that suggests that our model of
citizens—specifically, examples (3) and (4) and the assumption that
citizens retain a positive probability of voting for candidates that they
do not prefer spatially—is a legitimate base upon which to proceed
with the task of constructing spatial theory.?® It is our hope, of course,
that empirical research will be directed further to the task of ascertaining
the appropriateness of one assumption or another.

Perhaps the most important conclusion of this essay, however, con-
cerns the existence of equilibrium in political processes. Because it is
generally conceded that the unidimensional and multidimensional
conditions for equilibrium of Black et al. are highly restrictive, the
question arises as to whether political processes—especially those that
derive from a voting procedure such as majority rule—ever attain
equilibrium. If they do not, or if our abstract descriptions of them do
not, serious doubts exist as to our ability to offer parsimonious theories
that explain and predict events. Our analysis with a probabilistic
calculus of choice suggests, however, that disequilibrium may be a less
pervasive phenomenon than is otherwise believed.

29 Rosenthal, ‘“Electoral Participation,” in press.
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APPENDIX

The proofs of Theorems 1 and 2 consist essentially of showing that if our assump-
tions about p; are satisfied for all citizens, then ¢, satisfies (i) and (ii). These theorems,
the numerical procedure for calculating equilibrium strategies, and Theorems 3 and 4
also follow directly from J. B. Rosen’s results. The corollaries to Theorems 1 through
4 as well as Theorems 5 and 6 are proved directly. To simplify exposition, however,
we delete from this appendix those exact mathematical details which, while important
in any completely rigorous proof, necessitate a rather lengthy discussion of some
definitions of real variable analysis.3®

We begin by altering our notation slightly; we add the superscript ¢ to p; and x
so as to denote a particular citizen in the set C of all citizens. Observe now that the
expected number of votes for candidates 1 and 2 are expressed respectively as,

(1A) V10, $) = Y p:(UO/x°), U/x%)
ceC
(2A) Va0, &) = Y po’(U(8/x9), U(/x%)

ceC

Hence, candidate one’s expected vote is obtained by ascertaining each citizen’s
probability of voting for 8 and then by summing these probabilities over the entire
electorate.

Turning now to Theorem 1, we assume that the candidates maximize expected
plurality. Thus,

(3A) P10, §) = V1(6, ) — V8, $)
@é4a) P20, $) = V26, ) — V1(6, $)

To prove Theorem 1 using the general game theoretic result about two-person
zero-sum, infinite games, we must show that ¢,(0, ) is concave in 8 and convex in ¢,
and that ¢,(8, ¢) is concave in ¢ and convex in 6. (It is readily seen that ¢, and ¢,
are continuous in 8 and ¢). We use the following general results about convex
(concave) functions:

30 Briefly, these conditions are: (1) X, the space of all admissible strategies and
preferences, is a convex compact subset of R"; (2) U is a continuously differentiable
function of 6, and is strictly concave for some subset of C, the set of all citizens;
(3) p.¢ — po° is a continuously differentiable function of U(8, x°) and U(Y, x°), and
if A2, p¢ is continuously differentiable and; (4) the convexity and concavity properties
of p,¢ and p,° are strict for some subset of C. To understand why these assumptions
are necessary and how they are used in our analysis, see the fully rigorous proof of
Theorem 1 and its corollary with assumption A2’ in Hinich, Ledyard, and Ordeshook,
“Non-Voting and the Existence of Equilibrium Under Majority Rule,” Journal of
Economic Theory 4 (March 1972), 144-153.
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@D: If r(x) is convex (concave) in x, —r(x) is concave (convex) in x.

(D: If r(x) is convex (concave) in x for all i, then R(x) = X; ri(x) is
convex (concave) in x.

(ID): If ¢(x) is convex (concave) in x, and if r(¢(x)) is convex (concave)
in ¢, then r is convex (concave) in x where 7" >0.

From A4, p,° is concave in U(/x°) and convex in U(8/x°) so that from (I), —p,°
is concave in U(8/x°) and convex in U(¢/x°). From the assumption that p,° is concave
in U(8/x%) and convex in U(/x°) and from (II), then p,® — p,° is concave in U(8/x°)
and convex in U(/x°). Candidate one’s plurality, however, is simply a sum of these
functions so that from (II), ¢, is concave in U(8/x°) and convex in U(¢J/x°). Finally,
from the assumption that U is a concave function of its argument—assumption Al—
and from (III), it follows that ¢, is concave in 6 and convex in ¢. Also, since
@2 = —o , it follows from (I) that ¢, is concave in ¢ and convex in 6.

We can also show that Theorem 1 as well as the numerical procedure for cal-
culating equilibrium strategies, follow from Rosen’s results. First, we must show
that the matrix

2Vgpep, Veyp: + Vo-zﬂPz)

SA 6, =(
(GA) Q0. +) Vo1 + Vyops 2Vyyep,

is negative definite where Veoeps, Voypr, Vye@r, and Vyyuep, are the matrices
(0%p1/ 08, 96;), (0%9,/20; Op;), (O%pi| Otp; 00;), and (O%@y/; Oif;) respectively for k = 1, 2.

Note that since ¢, = —¢,, (SA) can be written,
v, 0,
©A) Qe =2( 0 )
0 —Vdn[ﬂPl

If, for example, the election involves a single issue (n = 1), (6A) becomes,

¢, 0
20,?
62
0o — 2%
Oy

Hence, if Q is negative definite, the second derivative of ¢, with respect to ¢, is
positive. That is, if ¢,[g.] is a concave function of 6;[#,] and a convex function of
Yn1[6:1, Q8, , ¢,) is negative definite in our one dimensional illustration.

To prove that Q is negative definite for more than one dimension we define the
function,

@74) s9(UO/x9), Up/x%)) = p1(UO/x), UY/x%)) — po*(UO/x°), U($/x%))
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From (1A) and (3A), then,
(8A) P20, ) = ) s°
ceC

Clearly, now, if p.¢ satisfies A2 through A4 or A2’, A3 and 4,

os°
©A) o - °
os°¢
03%s¢
(11A) W”)_z <0
(124) o5

22 _>o
UG~

with at least the first inequality strict for some c.

Let VoU(0/x°) = (8UJe8, ,. .., 3U/d0,), and let VgU(8/x°) be the matrix
(82U/20,86;) which is negative definite by the concavity of U in 0. Finally, let Vggs®
be the matrix (02s¢/00; 06;). Observe that,

0%s° os®
1 Vgest = | ————) (V. VoU) [—— '/
A Vo = ST ) (wauavy + ( aU(e/xc)) wU
For example, if n = 1, (13) reduces to,
s 0%s° ) oU(8,/x:°) 0os° .8“‘U(01/x¢,)
00,* B [0U6,/x:9)]? 90, oU(0,/x,°) 00,2

which is simply what we obtain if we calculate the second derivative of s¢ directly.
From (9A), (11A), and the fact that VggU(8/x°) is negative definite, it follows that
Vgese is negative definite. Since this is true for all ce C,

Voorpr = 3. Voos®
ceC
is negative definite. In a similar way, we can show that
—Vyupr = ), Vyys®
ceC

is negative definite. Thus, from (6A), Q(0, ¥) is negative definite. Since ¢, is concave
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in © and ¢, is concave in ¢, Theorem 1 and expression (7) follow directly from
Theorems 1, 2, 6, and 9 of Rosen.

To prove Corollary 1.1 (that is, that 6* = $* = a), we note that if p,° and p,° are
of identical functional form, ¢,(X, X) = 0. Suppose now that 8* * * (that is,
the candidates do not converge). Since

?1(0%, %) > gy (P*, %) =0
and
9a(0%, $*) > py(8%,0%) = 0

it follows from ¢; = —¢, that
P1(8%, $*) = (6%, %) =0
Hence, by the (strict) concavity of p, in 6.
1(£0* + (1 — ) Y*, %) > £o)(0%, 0*) + (1 — &) pu(b*, $*) = 0 = y(0%, ¥)

which is to say that the strategy £0* + (1 — £) $* yields candidate one a positive
plurality if candidate two adopts his “optimal” strategy. Thus, (0*, $*) is not an
equilibrium unless 8* = *, By the concavity of the objective functions, the zero-
sum nature of the election, and the nature of the equilibrium, it follows that
pi(a, $) > 0if ¢ # a and ¢,(0, @) > 0 if 8 # a. The strategy «, then is dominant.

Q.E.D.

Like Theorem 1, Theorem 2 can also be shown to follow directly from those
results in game theory pertaining to games with continuous, convex payoffs. As
with Theorem 1, however, we again use Rosen’s results to establish the validity of
the numerical procedure defined by expression (7). First, we must show that the
matrix

2VgV VeuV: + VeuV.
CYORRS I G SN
VyoVs + VyeVs 2V V,
is negative definite where VggVy, VgyuVi, VygVi, and VyuV, are the matrices
(0%V/00; 06;), (0%V3|20; o), (D*Vi/oy; 06;), and (0%Vy/oy; o;) respectively for
k=12
Suppose now that Vg, V, = VeV, = 0 for k = 1, 2. Verbally, suppose that the
rate of change in a candidate’s total is independent of his opponent’s strategy
(as in all of our examples except (5)). Then Q(0, ¢) reduces to,

VeV, O )

oo v =2("0" o |



A THEORY OF ELECTORAL EQUILIBRIUM 191

APPENDIX
(CONTINUED)
By definition,
2%p,° op,°
2VgV, = 2 ————— (VoU)(V, U’ ——————— (VgoU
boV1 ZC Goeer POV T e Ve

Since p,° is concave in U(0/x°), o%p,!/[oU(0/x)]* < O.

Also, we know that [0U(0/x°)/08]* > 0. It follows then that the first term inside
the summation sign is negative definite. Similarly, op,°/oU(8/x°) > 0 from A2, but
VU is negative definite since U is concave. Hence, the second term is also negative
definite. Thus, 2VgV, is the sum of negative definite matrices and, therefore, is
itself negative definite. In a similar fashion, 2V,yV, can be shown to be negative
definite so that Q,* is negative definite.

If VgV, and VeV, are not equal to zero, however, then we must consider
Q, = A + B, where

A= (Vgng 0 )

0 ViV,
B— ( VesV1 Vey V1 + Va-ﬁVz)
VyoV1 + VyoVe VyuVi

Since A = Q,*/2, A is negative definite. Hence, all we must show is that B is negative
semidefinite to obtain our result. That is, we must show that

(144) yBy' <0

()

y ==

Y

and where y, and y, are 1 X n nonzero vectors. From the definitions of VgV,

and the like, and by straightforward manipulation, it can be shown that (14A) is
satisfied whenever

where

32plc 62p20 [ a2plc + aﬂpzc ] 2
UG/  [2UW/x)E ~ L aU(®6/x?) 8U(/x9) aU(8/x°) oU(P/x°)

This is the condition we assume in footnote 16. It is satisfied by all of our examples
in Section 5 which pertain to vote-maximizing candidates.

" To prove Corollary 2.1, assume that 6% # *. If p,° and p,° are of identical
functional form, the candidates’ labels are interchangeable, so if (8*, ¢*) is an
equilibrium (P *, 0*) is an equilibrium. It follows then that V;($*, *) = V1(0%, $*).
Now, from the (strict) concavity of V; we get,
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Vi(§0* + (1 — &) ¥*, b*) > £1(8%, &%) + (1 — §) Vy(b*, $¥)
or equivalently
Vi(£0* + (1 — &) b*, *) > V(0% $*)

which is to say that the strategy £0* 4 (1 — £) * is better against Y * than is 0*.
Thus, it must be the case that 0* = J*,

Theorems 3 and 4 are essentially corollaries to Theorems 1 and 2 and they follow
in the same way from Rosen’s theorems. To prove Corollaries 3.1 and 4.1 we assume
again that 0* # J*. Since (y*, ¢*) is feasible, it can be compared with (8%, $*).
Applying the appropriate parts of the proofs of Theorems 1 and 2, it follows that
(6*, Y*) is an equilibrium only if 6* = *,

To prove Theorems 4 and 5 we assume that if two citizens share the same ideal
preference, their utility functions are of the same functional form and their prob-
ability of voting functions are of the same functional form. This assumption is not
necessary, but our notation is greatly simplified with it. Denoting the distribution
of ideal preferences by f(x), now we write

(154) Vi@, b) = Y py(U®/x), U/x)) £(%)

xeX

Without loss of generality, let E(x) = 0. Observe that from (15A) and from the
conditions of Theorem 5,

Vi, 4) = Y py(U(—8/—x), U(—$/—x)) f(X)

xeX

= Y p(U(—8/—x), U(— b/ —x)) f(—x)

xeX

Il

Y. p(U(—8/x), U(—¢/x)) f(x)

xeX
= Vi(—6, —).

Similarly, V,(—0, —) = V,(0, $) so that both V; and V, are radially symmetric
about 0. Now assume that a # 0, where a is the equilibrium. By the (strict) concavity
of ¢, in 6,

0 = ¢:1(0,0) = p1(2/2 — @/2,0) > (e, 0)/2 + @i(—a, 0)/2

But ¢, is radially symmetric if V; and V, are radially symmetric so that ¢,(a, 0) =
¢1(—a, 0). Thus, ¢,(a, 0) < ¢,(a,a) = 0. But (a, a) is the equilibrium and con-
sequently, ¢,(a, 0) > ¢,(a, @). Thus, @ = 0.
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To prove Theorem 6, we observe that at the equilibrium a, d¢,/08; = 0 and
dpy/o; = 0 fori = 1,...,n (Rosen, p. 524). Now

0P, _ Z os

%6; 5 o,
Let

% =) xf(x).

X

By the assumption of linearity, for 6 = ¢ = a,

991 _ 9s(U®/X), U(P/X))

a9; 20;
But
o o oUO/x) o1
200, oU(8/X) 00; 28;

From (9A), however, we know that ds/oU(8/x) > 0. Thus, d¢,/00; = 0s5/08; = 0
only if 0U(6/X)/06; = 0. Now U(8/X) has a unique maximum at 6 = X and thus
oU(/X)/00; = Ofori = 1,...,nif and only if ® = X. That is, a is the equilibrium
if and only if it equals the mean of f(x).



